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Abstract

On a Lorentzian manifold, we define a new functional on the space of unit timelike vector fields
given by theL, norm of the restriction of the covariant derivative of the vector field to its orthogonal
complement. This spacelike energy is related with the energy of the vector field as a map on the
tangent bundle endowed with the Kaluza—Klein metric, but it is more adapted to the situation. We
compute the first and second variation of the functional and we exhibit several examples of critical
points on cosmological models as generalized Robertson-Walker spaces and Godel universe, on
Einstein and contact manifolds and on Lorentzian Berger’s spheres. For these critical points we
have also studied to what extent they are stable or even absolute minimizers.
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1. Introduction

A smooth vector fieldV on a semi-Riemannian manifold/, g) can be seen as a map
into its tangent bundle endowed with the Kaluza—Klein metric defined.byhe energy
of the mapV is given, up to constant factors, 93(4 ||VV||2dvg. Unit vector fields that
are critical points for variations among unit vector fields, have been identified as those for
which V*VV is colineal toV, whereV*V is the rough Laplacian.
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If gis positive definite, the energy vanishes only for parallel vector fields and it can be seen
as a measure of the failing of a vector field to be parallel. This kind of vector fields, when
they exist are the absolute minimizers. For many natural manifolds admitting smooth unit
vector fields but not parallel ones, the value of the infimum and the regularity of minimizers
is now an open problem. In the last years many authors have studied all this questions, as
can be seen in the reference§48B].

If we consider a Lorentzian manifold and the energy of a unit timelike vector field, the
Euler—Lagrange equation involves, in that case, the rough D’Alembertian which is not an
elliptic operator. But more important, since the functional is not bounded bellow, to study
minimizers has no sense. This has leaded us to define a new functional more adapted to the
situation, that will be calledpacelike energyFor a reference framg, it is given (up to
constant factors) by the integral of the square norm of the restricti®tzoto Z-.

We have computed the Euler—Lagrange equation of this new variational problem showing
that critical points are characterized as those reference frames for BHi@hcolineal toZ,
whereD is a differential operator, which is second order and elliptic on space coordinates,
and only first order on time coordinates. We will say that such a vector field is spatially
harmonic. We have also computed the second variation at critical points. These are the
contents ofSection 3

Section 4is devoted to the study of different examples of reference frames as static
reference frames and projective vector fields. In that case criticality can be described in
terms of the Ricci tensor and in particular:

(a) Every affine reference frame on an Einstein manifold is spatially harmonic
(b) If the characteristic vector field of a Lorentzian K-contact manifaldd in particular,
of a Lorentzian Sasakian manifgli$ timelike then it is spatially harmonic

In Section 5we have considered the well-known Robertson—Walker cosmological model
and the comoving reference frame. We have shownitmatGRW the comoving reference
frameao; is a spatially harmonic reference frame. Furthermaf¢he manifold is assumed to
be compact and satisfying the null convergence conditi@mcomoving reference frame is
an absolute minimizer of the spacelike enefyis result has been obtained as a particular
case of the corresponding result for the Lorentzian manifolds endowed with a timelike
vector field which is closed and conformal.

Section 6is devoted to the study of the classical Gédel universe, that is definRf as
with the metric

() = dx? 4 dx3 — %ez‘”l dy? — 21 dydr — dr?,

wherex is a positive constant. We show tliats spatially harmonic and that it has the same
energy that another non-critical reference frame; consequently, it cannot be an absolute
minimizer. In fact, by computing the Hessian, we see thét unstable and it is not even a

local minimum.

To finish the paper we study the Hopf vector fields defined on the Lorentzian Berger’s
spheres. These metrigg, with u < 0, on the spher§?'+* are obtained as the canonical
variation of the submersion defined by the Hopf fibration (s%**1, g) — CP", where
g is the usual metric. As can be seen@ Hopf vector fields are critical for the energy
and consequently, since they are geodesic, they are also spatially harmonic; moreover their
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energy and spacelike energy coincide. We have shown alfg] that they are unstable

for the energy whem = 1 but the stability in higher dimensions is an open question.
Nevertheless, the second variation of both functionals at Hopf vector fields is different and,
in contrast with the usual energy, the problem for the spacelike energy is completely solved
because we show iBection 7thatHopf vector fields on Lorentzian Berger’s spheres are
stable critical points of the spacelike energy.

2. Preliminaries

The energy density of a map: (M, g) — (N, h) from a semi-Riemannian manifold to
another is defined ag¢p) = (1/2)tr(L,), whereL,, is the (1, 1) tensor field completely
determined by(¢*h)(X,Y) = g(L,(X), Y). If {E;} is a g-orthonormal local frame and
& = g(E;, Ej) then

n+1
tr(Ly) =Y &i(h o @) (pu(Ei), pu(E).
i=1
The energy o is then defined by

E(p) = / e(p) dvg,
M

where dy, represents the density dd, or the volume element for orientedd defined by
the metric.

It is well known that the Euler—Lagrange equations give rise to the definitieensfon
of a map that is a vector field along the map whose vanishing defines harmonic maps. In
a g-orthonormal local frame as above, the tension is expressed in terms of the Levi-Civita
connectionsv¢ andVv” as

n+1
To(p) = Y (Vi pu(Ei) — 9 (V5 E).

i=1
If we consider the tangent bundte: TM — M and a semi-Riemannian metgocon M,
we can construct a natural metric M as follows: at each point € TM, we consider
on the vertical subspace @f(TM) the inner product (up to the usual identification with
T,M, wherep = m(v)), we take the horizontal subspace determined by the Levi-Civita
connection as a supplementary of the vertical and we declare them to be orthogonal; finally,
we define the inner product of horizontal vectors as the product of their projections, with the
metricg. The so constructed metri€ is sometimes referred as tBasakbr Kaluza—Klein
metric

Definition 2.1. For a vector field/ we have(V*gS)(X, ¥) = g(X, Y) + g(VxV, VyV) and
consequenthLy = Id + (VW){(VV). So, the energy of the map : (M, g) — (TM, g5),
that is known as the energy of the vector field, is given by

— VV|“dv.
: +2/M|| 12 dv

EW) =
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Moreover, the tension is (S§€])

ver

hor
To(V) = (Z iR(VV)(E), V, E») + (Z ei(in(vx/))(Ei)) :

where for a vector field{ we have represented bY'e' its vertical lift and by X" its
horizontal lift andvV*VV = ", &;(Vg,(VV))(E;) is the rough Laplacian.

Critical points of the energy are those vector fields with vanishing rough Laplacian. If
the manifold is compact, and the metric is positive definite, this means that the vector field
should be parallel.

In a Riemannian manifold, the condition for a unit vector field to be a critical point
for variations among unit vector fields has been obtained by direct computation of the
Euler—Lagrange equation. The second variation at a critical point has also been
computed.

The relevant part of the energg(V) = fM b(V) dv, whereb(V) = (1/2)|VV||?, when
considered as a functional on the manifold of unit vector fields, is sometimes called the total
bending of the vector field.

Proposition 2.2 (Wiegmink[14]). Given a unit vector field V on a compact Riemannian
manifold(M, g) then

1. Vs a critical point of the total bending if and onlyW*V'V is colineal to
2. If Vis a critical point and X is orthogonal to V then

(HessB)y (X) = /Muwxn2 —IVVI?[X]?) dv.

The covariant version of above proposition, as it appediBihhas been very useful for
the study of particular examples and also to compute the second variation by a different
method. Letwy be the 1-formwy (X) = g(X, V*VV) associated t&*VV by the metric.

Proposition 2.3. Given a unit vector field V on a Riemannian manifaid, g) then

1. Vs a critical point of the total bending if and onlydfy (X) = 0 for all vector field X
orthogonal to V
2. If Vis a critical point and X is orthogonal to V then

(HessB)y(X) = fMuwxnz + X 2wy (V) dv.

It is easy to see that the similar results also holds for a unit timelike vector field on a
Lorentzian manifold that isZ is a critical point of the energy if and only if the rough
D'Alembertian,) ; &;(VEg,(VZ))(E;), is colineal toZ.

Let (M, g) be a Lorentzian manifold and I&tbe a reference frame (unit timelike vector
field) on M, the spacelike energy density Bfwill be defined as

b(Z) = 3114z o Pz|%,
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whereAz = —VZandPz(X) = X+g(X, Z)Z.Inthe sequel we willdenoté’, = Azo Pz,
the restriction of-V Z to Z+. The spacelike energy density can also be written as

n

- 1 1
b(Z) = E(tr(Az 0Az)+8(VzZ,Vz2)) = > Z 8(VE,Z,VE Z),
i=1

where{E;, Z}!_, is an adapted orthonormal local frame.

Definition 2.4. The spacelike energy of a reference frathis defined as
B(Z) = / b(Z) dv.
M

For compaci, the spacelike energy is finite for every vector field. This energy is always
non-negative and it vanishes if and onlydif, = 0, that is to say if and only if the reference
frame is rigid and irrotational. In particular, for static space—times the infimum of spacelike
energy is zero and it is attained.

In the positive definite case, the energy of unit vector fields is bounded on terms of the
Ricci tensor as follows.

Proposition 2.5 (Brito and Walcza5]). LetV be a unit vector field on a compact manifold
M of dimensiom + 1:

1. If n > 2,then

B(V) =

1 .
T /M Ric(V, V) dv. 1)

2. If n > 3, then the equality if{1) holds if and only if V is totally geodesithe n-dim-
ensional distribution generated by is integrable and defines a Riemannian totally
umbilical foliation

Following similar arguments we can show the following proposition.

Proposition 2.6. Let Z be areference frame on a compact Lorentzian manifold of dimension
n+1:

1. If n > 2,then

B(Z) > ! / Ric(Z, Z) dv.
_2 M

2n

2. If n > 3, then the equality above holds if and only if the n-dimensional distribution
generated byZ ' is integrable and defines a totally umbilical foliation

Proof. Let {E;, Z}?_, be an adapted orthonormal local frame and let us denotg by

g(VEg,Z, E)), thenb(Z) = (1/2) Zi_j hﬁ that can be written as (S§¢&])
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z 1 2, 1 o 1 2
b(2) =5 ;jw.. —hi)® + —— ;(h..h,, — hijhj)) + 5—— E(h., + hj)

n—2 , 1 1
- zghij > n—_]_Z(hiihjj — hijhji) = 102

i<j

+

where o, is the second mean curvature of the distribution definedZby Using that
[y (Ric(Z, Z) — 202) dv = 0 (se€[12]) we have

B(Z) > ! /Ric(Z Z)d
“2m-2)y P £)EY

with equality if and only ifhjj = O fori # j andhj = hjj for all i, j. O

Remark 2.7. On a Lorentzian manifold the inequality &roposition 2.5does not hold

becaus¢iVZ|? = —|VzZII> + Y, ; hﬁ and thenj|V Z||? cannot be bounded by, ; hﬁ

3. First and second variation
Let us compute the first and second variation of this new functional.

Proposition 3.1. LetZ be a reference frame on a Lorentzian manifold M. Then for all vector
field X orthogonal to Z

@200 = [ (V2 0 VX) + 2(VxZ, V22) + §(V2X. V2 2)) b
Proof. Let Z : I — I(T~1M) be a curve of unit timelike vector fields for some open
interval I containing O such thaZ(0) = Z andZ’(0) = X.

boZ@ = %(tr(Atza) 0 Azw) + 8(Vz Z(1), V21 Z(1))).
Then

(bo2) (1) =tr(VZ1)' o VZ'®) + 8(V2 ZW) + Y2y Z' 1), V2 Z®).  (2)
Therefore,

(bo2)(0)=tr(VZ) o VX)+ g(VxZ,V2Z) + g(Vz X,V Z)

from where the result follows. O

If {E;, Z} is an adapted orthonormal local frame the differentiabaft Z can be written
as

1

(dB)2(X) = /M (Zg(vg,.x, Ve Z) + §(VxZ, sz>) dv.
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To write the differential of3, and therefore the condition of critical point, in a simpler form
we will use the following lemma.
Lemma 3.2. Given K a(1, 1)-tensor field ad X a vector fieldwe have
(CIVK)(X) = —tr(K o VX) — éa,
WhereC% is the tensor contractigr represents the divergence operator of g ar@) =

g(K(X), Y).

Corollary 3.3. Let Z be a reference frame on a compact Lorentzian manifo&h for all
X orthogonal to Z we have

@520 = [ (VR0 +8VxZ. V22) b0
= fM(—(C%fo) + g(K(VzZ))(X)dv = /M wz(X) dv,
where@z = —CIVK + g(K(Vz2)) andK = (VZ o P2)".
As for the Riemannian case, we can conclude the following proposition.

Proposition 3.4. A reference frame Z on a compact Lorentzian manifold is a critical point
of the spacelike energy if and only if théorm &, annihilatesZ-.

Since the condition of critical point that we have obtained is a tensorial condition, we
can define critical points even if the functional is not defined whers not compact. In
this case we have the following proposition.

Proposition 3.5. A unit timelike vector field Z verjfie&sz(ZL) = 0if and only if for every
open subset U with compact closure the functiabaldefined by

By(2) = / b(Z) dv,
U
verifies(dBy)z(X) = Ofor all X e Z+ with supportin U

Let us analyze the relationship between the condition of critical point of the spacelike
energy and the usual one. As in the Riemannian casé, ifs the vector field associated
by the metric tavz, we have tha¥ is a critical point of the spacelike energy if and only if
X, is colineal toZ.

It is easy to see that

n+1
Xz ==Y &(VE(VZo P2)(E) + (VZo P2)'(V22),
i=1

that in an adapted orthonormal local frame can be written as



O. Gil-Medrano, A. Hurtado / Journal of Geometry and Physics 51 (2004) 82—-100 89

Xz=—= (VEVEZ ~ Vv, 52) — dV(Z)V2Z ~ (VZ) — (V2))(V22)
i=1
=—V*VZ —V,;V2Z —dV(Z)V;Z + (V2)\(V,Z).

So, if Z is geodesic therx is a critical point of B if and only if Z is a critical point of
the usual energy. In contrast with the rough Laplacian, the differential opddagiven by
DZ = Xz is second order but elliptic on space coordinates.

We can now give the following definition.

Definition 3.6. A reference frame on a Lorentzian manifold is said spatially harmonic if
and only if it is a critical point of the spacelike energy, or equivaledtf is colineal toZ.

Let us compute the second variation of the spacelike energy.

Proposition 3.7. Given Z a spatially harmonic reference frame on a compact Lorentzian
manifold andX € Z+, we have

(HessB)z(X) = / (VX2 +28(VxX, V2Z) + |VxZ + V2 X|?) dv
M
+ f IXI2(IVZZ|1? - (CIVK)(Z)) dv.
M
Proof. LetZ : I — I'(T~1M)beacurve asiRroposition 3.5uchthaZ(0) = Z, Z'(0) =
X, using(2)

(bo2)(0)=tr(VX)' o VX + (VZ)' 0 VZ"(0)) + g(Vzr(0)Z + V2Z"(0), VzZ)
+2¢(VxX,VzZ) +g(VxZ+VzX,VxZ + VzX)
= VX2 + tr(VZ o Py) o VZ"(0)) 4 2g(Vx X, V2Z)
+8(Vzi0)Z, V22) + |VxZ + VX |

Now, fromLemma 3.2we obtain after integration
[ o2y ©@dv= [ (IVXIZ+ 294X, V22) + 1942 + X1 o
M M

—i—/ (&(Vzr0Z,Vz2Z) — (C%VIN()(Z"(O)))dv.

M

Now, Z”(0) = Pz(Z"(0)) + ||X||2Z and sincewz(Z"(0)) = g(Vp,zr0)Z,VzZ) —
ClvKk(z"(0)) then the criticality ofZ implies that

e(Vzr0Z, VzZ) — CIVK(Z"(0) = @2(Z"(0) + | X|1IIVZZ|?
=IXI2(IVZZI|1? + @2(2))
=IX12(IV2Z||? = (CIVK)(2))

from where the result holds. O
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As for the first variation, when the manifold is not compact the stability can be defined
as follows.

Definition 3.8. Let Z € I'(T~1M) be a critical point of the spacelike energy. We say that
Z is stable if for every open subsgtwith compact closure,

(HessBy)z(X) > 0

for all X e Z+ with support inU, whereBy is the restriction of the functional to the open
subsetU.

4. Examples

As we mentioned in the preliminaries, the easiest examples of spatially harmonic refer-
ence frames are those of null spacelike energy. In order to give a physical interpretation of this
condition, let us recall the decomposition-eft’, in its symmetricS and skew-symmetric
£2 parts, called the deformation and the rotation of the reference framespectively. Now,
if we decompose asS = o + ©/nPz, whereo is trace-free, then-A’, can be written as

, e
—AZ:.Q—FO'—F;PZ.

In this case@ is called the expansion amdthe shear of the reference frarde
Using this decomposition the spacelike energy takes the form

3 1 1
B(z) = 5/ <||:2||2+ loll? + —@2> dv.
M n

ConsequentlyB(Z) is zero if and only ifS = 0 and2 = 0, that is, if and only ifZ is
rigid and irrotational. As a particular case of this type of reference frames we have the static
reference frames that are defined as follows.

Definition 4.1. A vector fieldZ is stationary if and only if there exists a positive function
f onM, such thafZ is a Killing vector field. A vector fieldZ is static if and only if it is
stationary and irrotational.

The condition for a Killing vector fieldZ to be a critical point of the energy can be
written in terms of the Ricci tensor. It is natural to study when a Killing reference frame is
spatially harmonic. Since, in contrast with the Riemannian case, a Lorentzian manifold can
admit affine unit vector fields that are not Killing, we are going to study how the criticality
condition can be expressed under the weaker hypothe&iefng a projective reference
frame. The interest of these vector fields in general relativity can be s¢&B]in

Definition 4.2. Let Z be a vector field on a Lorentzian manifold. We will say tiats
projective if and only if there exists a 1-formon M such that

LzVYX, ) =uX)Y + u(HX VX, Y e I(TM).
If w =0, Z is called affine.
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Proposition 4.3. If Z is projective then we have
VuVvZ — Vy,vZ = R(U, )V + p(O)V + u(MU
forall U, V € I(TM).
By developing the defining condition we get that(Z) = g(VzZ, VzZ) andu(X) =

g(VxZ,VzZ)for X € Z*+.
Let X be a vector field orthogonal 18, it is easy to see that

(Cin()(X) = (C%V(VZ)t)(X) +8(X,VzVzZ) +div(Z2)g(X,VzZ).
And if Z is projective then in a orthonormal adapted local frame we have
(CIVK)(X) = g(X. Vv,22)+ Z g(R(E;, Z)Ei+2p(EN E;, X)+div(Z)g(X, VzZ)

1

=g(X, Vv,zZ) — Ric(Z, X) + 2u(X) + div(2)g(X, V2 2),
and
wz(X) = —g(X, Vyv,zZ) + Ric(Z, X) — u(X) — div(Z)g(X, VzZ).
ThereforeZ is spatially harmonic if and only if
—g(X, Vy,2Z) + Ric(Z, X) — u(X) —div(2)g(X,VzZ) =0 VX € Z+.

Now, if we assume to be affine, that igc = 0, we can prove tha&f;Z = 0 and then the
condition to be spatially harmonic (and then a critical point of the usual energy Birsce
geodesic) can be expressed as

Ric(X,Z) =0 VX ezt

Consequently we have the following proposition.

Proposition 4.4. Let Z be a projective reference frame. Then
(a) Zis spatially harmonic if and only if
—8(X,Vv,zZ) + Ric(Z, X) — w(X) —div(2)g(X,VzZ) =0 VX € z+t.

(b) If Z is affine then it is a critical point of the usual ener@nd then spatially harmonjc
if and only ifRic(X, Z) = OVX € Zt.

(c) Let M be an Einstein manifold witRic = Ag, A < 0 and Z be an affine reference
frame ThenZ is a critical point of the usual energy. Moreoysince it is geodesjat
is also spatially harmonic

Remark 4.5. For Einstein manifolds, only negative valuesiofre admissible since for
A > 0 unit timelike projective vector fields do not exist.

A particular case of a Lorentzian manifold admitting unit timelike affine (in fact Killing)
vector fields is that of a Sasakian manifold with Lorentzian metric [6€E8]), that is
defined as follows.
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Definition 4.6. Giveng, & andn tensor fields of typ€l, 1), (1, 0) and(0, 1), respectively,
(p, &, n) is called and almost contact structure drif the followings are satisfied:

1. n =1.
2. n(@(X)) =0, X € I(TM).
3. $2(X) = —X + n(X)E, X € I(TM).

Definition 4.7. (¢, &, 1, g, ¢) is called an almost contact metric structureMnif (¢, &, n)
is an almost contact structure & andg is a semi-Riemannian metric av such that:

1. g8 =¢,e=10r-1.
2. n(X) =eg& X), X € I(TM).
3. 8(@X,¢Y) = g(X, V) —en(X)n(Y), X, Y € I(TM).
Moreover, if th(X, Y) = g(¢(X), Y) forall X, Y € I'(TM) then(¢, &, n, g, ) is called a
contact metric structure.

Definition 4.8. A contact metric structure oM is said to be normal if
(Vxp)Y =en(NX — g(X, N)§, X, Y e I(TM).

In this case we cali a Sasakian manifold.

It is easy to see that the characteristic field of a Sasakian manifold is a Killing vector
field. So it can be seen as a particular case Bfeontact manifold.

Definition 4.9. A contact metric structure oM is said to be a&-contact structure if the
characteristic field is Killing.

In the Riemannian case it is known (48ep. 92) that the Ricci tensor of & -contact
manifold verifies that Ri&, X) = 0 for all vector field orthogonal té. It is easy to see that
the same proof also works in the Lorentzian case, and then we have the following corollary.

Corollary 4.10. Ifthe characteristic fiel¢ of a Lorentziank-contact manifoldand then of
a Sasakian manifolds timelike then it is a critical point of the usual energy. Furthermore
since it is geodesjdt is also spatially harmonic

5. Generalized Robertson-Walker space-times

Definition 5.1. A vector fieldX on a Lorentzian manifold is said to be closed and conformal
if there exists a functiogpp € C°°(M) such that

V,X =¢u foreveryu € TM.

Let M"* be a space—time endowed with a timelike vector fildhat is closed and

conformal. To study the spacelike harmonicity of the vector field X/(/—|X|2) for
such a space—time we need the following proposition.
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Proposition 5.2 (Montiel [11]). LetM”+1 »n > 1,be a Lorentzian manifold endowed with
a timelike vector field which is closed and conformal. Tive@have

(a) The n-dimensional distribution tangentXd- is integrable and the function¥ |2, div X
and X (¢) are constant on the leaves of the corresponding foliation
(b) The unit timelike vector field defined by= X/(/—|X|2) on M"*1 satisfies

Vv =0, Vyv = Y if (Y,v)=0.

¢
/—|X|2

Proposition 5.3. The unit timelike vector field defined by= X/(,/—|X|2) is a critical
point of the usual energy. Moreoveincev is geodesic it is also spatially harmonic

Proof. Let us compute the rough Laplacian using an adapted orthonormal local frame
{E;, V}?:]_
n
V*Vv=—3 (VEVEv — Vv, £)
i=1
2

— Py(V, Ep) = —%nv. 0

(Vg E;
\/—|X|2 Z

If we now assumeé/ to be compact and such that the Ricci curvature is non-negative on
null directions, that is, itV satisfies the null convergence condition, then these observers
are not only critical points of the spacelike energy, we can show U&iogosition 2.6hat
in fact they are absolute minimizers of the functional.

Proposition 5.4. LetM"t1 be a Lorentzian manifold equipped with a closed and conformal
timelike vector field X satisfying the null convergence condjtiean the unit vector field
v = X/(v/—|X|?) is an absolute minimizer of the spacelike energy

Proof. Let Z be a reference frame av1, by Proposition 2.6

EZ)>; Ric(Z, Z)dv and B( __t Ric d
D2 35—y ), Koz )= g J, R o

To get the result we only need to use that, under the hypothedis, e have
Ric(Z, Z) > Ric(v,v) forall Z suchthat|Z|? = —

as can be seen [d1]. O

Among the space-times admitting a closed and conformal timelike vector field, we find
one of the most important cosmological models: the Robertson—Walker space—time and the
so-called generalized Robertson—Walker (GRW) space—{ithes fact, it has been shown
in [11], that any such a space—-time is locally isometric to a Lorentzian warped product with
a (negative definite) 1-dimensional factor.
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Definition 5.5. AGRW space-time is awarped prodck ¢ F, where(B, gg) = (I, —dr?)
with I € R an open interval(F, gr) a Riemannian manifold angd : I — (0,00) a
positive function. The reference frames definedy: 9, are called comoving reference
frames.

If (F, gr)isamodelspaces”1(1), R*~1, H"~1(—1)), thenthe corresponding space—time
is called a Robertson—Walker space—time.

As a particular case of the result obtained above, we have the following proposition.

Proposition 5.6. Let M be a GRW space—timihen the comoving reference frarbeis

a spatially harmonic reference frame. FurthermpifeM is assumed to be compact and
satisfying the null convergence conditjidghe comoving reference frame is an absolute
minimizer of the spacelike energy

6. Godel universe

Another interesting space—time in general relativity is the classical Godel universe,
which is an exact solution of Einstein’s field equations in which the matter takes the
form of a rotating pressure-free perfect fluid. This modelRi$ endowed with the
metric,

() = d? + dx3 — F e dy? — 2t dydr — dr?,

wherew is a positive constant.
If we compute the Christoffel symbols of this metric we obtain the following lemma.

Lemma6.1.
Vo =0,  Vad =za€0,, Vi 0 =a(d —e ")),
Vaxz 8; == O, Vay ay == %C( eza)qaxl, VBXI ay = %(X el)IXlal‘v

Va,dy =0,  Vy dy, =0.

Letus denote by; = «/ﬁ(e“”lay — 0;). The Levi-Civita connection in the orthonormal
frame{d,,, dx,, d5, 9;} is given by the following lemma.

Lemma6.2.

_ o
Vi d5 = V2791V, 9, = ﬁaxl = Vi, .
Vi, d5 = V21V dy — V25,8 = 0= Vj, dy,
- — — X i _ _ —OX _ _i
Va,, 5 = V2ue 1y, 4 ﬁat NG 19,) = ﬁa,,
(07

/2

Va_{, Oy, = 0 + ady, Vaiay = —0tdy,.
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Proposition 6.3. In the Gddel universe we have

1. The reference framé, is a critical point of the usual energy. Moreovesince 9; is
geodesic it is also spatially harmonic y y
2. The reference framg = /2 € %19, is not spatially harmonic buB(Z) = B(d;).

Proof. If we compute the rough Laplacian &f

V*Vd, =V, 0,0 — Vo V& — Vi, Vo, 0y
o

V2

o

V2

= —aVy, O — —=Va, 0, + —=Va, 5 = —a%d,,
that is colineal to;.
Let us show thaZ = /2 e *"19, does not satisfy the Euler—Lagrange equations.
Since
4
Xz==) &(VE(VZo P))E) + (Vz o P2)'(V22),
i=1

and
_ o o

(VZ o P2) () = (VZ) (3 — 27919, = 728“ — V200, = —ﬁaxl,

(VZ o P2)(35) = (VZ) (35 + V2 € %19y) = ady,,

(VZ 0 P)(3xy) = (VZ)(3xy) = —v/ 20 25, + %a,, (VZ o P7)(3x,) =0
from where

(VZo P7)Y(VzZ) = (VZ o P7)'(ady,)

o 0[2 2
=—g Olaxl, —Eﬁxl at + g(otaxl, aﬁxl)ay = 728[ + o 85,,

we have that

X, =V, <_%axl) — Vi, (@dyy) — Vi, (—ﬁa ey 4 %a&
052

+(Vz 0 P7)(Va,85) + —=; + 0205 = o*V/2(e 10y — 3)).

V2
Therefore Z is not a critical point of the spacelike energy. Neverthelgssndo, have the
same spacelike energy, since

2b(v/2 € *10y) = —||Vy, (V219 |7 + | Vi, (V219 |2
+ (| Vo, (V2790 ||7 + || Vy,, (V2 €713, |12
FIV ey, (V2741012 = —2€721)| V3, 9,2

1, 1
+ 207 30— € 0, 17+ A e | Vo, |P= — SoP 4 Sa” + o,
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2b(D,) = [|Va; 311 + [ Vay, 9112 + | Vay, 0, 11* = o*. O

Consequently, although is a critical point it cannot be an absolute minimizer. In fact,
it is unstable as we can see by the following argument,

Proposition 6.4. 9, is unstable

Proof. To prove the instability of;, we have to show that there exists an open suliset
with compact closure and a vector fietdorthogonal ta, with support inU, such that

(HessBy);, (X) < 0.

So, givens € R* let U be the open ball centered@s, 0, 0, 0) of radius 3 andX = f59y,,
where f5 = e=®/2%1},5 andhy is the test function

1, r <39,
hs(r) = { /=2 (/(6=n 4 /r=20\=1" 5 — - 2§
0, r>25

with r being the distance to the poi(gs, 0, 0, 0).
Then, usingProposition 3.andLemma 6.1

(HessBy)a, (f30x,) = / IV (s 12 4 V3, (f3x) 1% — f2a?) du
B(28)— B(8)

2
_/ (eaxlaZ _ Ot_ le1> dv.
BES) 4

If we denote byrj the first derivative with respect to= \/(xl —28)2 + x% + y?2 +1?
then

h(fs) = e—“/”lhg(r)f, 3y (fs) = e—“/z"lhgm%
Ber(fy) = & /2 () L2 =S PIm. d(fy) = e (2
where
0, r<32é,
= | T EOINEE D+ /=22 o

(&/—2) L g5/6-1)2
0, r> 26.
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Since d = €**1//2 dvg then

V2 IV (312 + Vs, (f59:) 12 — f2a®) dv
B(25)—B(5)

= / E1((05(f5))% + By (f35))2 + (9, (f5))% — f2?) duo
B(25)—B(6)

2 2 2
_ t _ yt o
= 2 h/ 2 e 2ax1y_ L _ogan) —h2
/19(25)_3(5)< (k3() ( 2T 2 =)t g0
(x1 — 26)? X1 — 28 2
+ (H(1)* 5= — ahs(Iy() == + (h§()*Z — a’h3(r) | dvo,

Using that/a}(r)| < 2/8, x?r~2 < 4 and €% < 1 fork > 0. Then

V2 IV (30117 + Vs, (f50:) |1 — f5®) dv
B(28)—B(5)
116 4o
= <5_2 + ?) vol(B(25) — B(9)).
And

V2(HessBy)g, (fsd,) < <18—126 + %“) (vol(B(28)) — vol(B(8))) — gazvol(B(é)),

where vol means the volume in the Euclidean metric.
Consequently, since the positive term is of ordgés¥and the negative of order(&)
then, to get the result we only have to chods®g enough. O

7. Hopf vector fieldson Lorentzian Berger’'s spheres

It is well known that Hopf fibrationr : §2*+1 — CP" determines a foliation o§?*+1
by great circles and that a unit vector field can be chosen as a generator of this distribution.
Itis given by V = JN, whereN represents the unit normal to the sphere drttle usual
complex structure o®?'*+2, V is the standard Hopf vector field. §/*1 we can consider
the canonical variatiog,,, with . # 0, of the usual metrig

gulvi =glys,  gulv=nglv,  gu(V,|[VhH) =0.

Forn = 1 andu > 0 these metrics on the sphere are known as Berger's metrics (see
[2, p. 252). For all u # 0 the mapr : (§%*1,g,) — CP" is a semi-Riemannian
submersion with totally geodesic fibers. The distribution determined by the fibers admits
as a unit generatov* = 1//]u[IN which is timelike for negative. and we will call

also Hopf vector field. As can be seen[8] Hopf vector fields are critical for the usual
energy of unit vector fields and consequently, since they are geodesic, they are also spatially
harmonic andB(V#) = B(V*). Nevertheless the second variation of both functionals at
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VH# is different, in fact:
(HessB)yu (A) = /Szm(”V“A“zHIVﬁV“ + V%Auz —JAIRCIVER) (VR) du,
= /SZM(IIV”AII2 + | VA VE + V%AHZ — 2nu|A)1?) dv,
= /SZ”H IV VH 4 Vi, All? doy, + (HessB) yu (A), 3)

whereV* is the Levi-Civita connection of,, that is related to/ by
VX =VyX+ (u—1)VxV, VgV = uVxV, VRY = VxY, X,Y eVt

We have shown iff] thatV* is unstable foiB whenn = 1 but the stability in higher dimen-
sions is an open question. In contrast, the problem for the spacelike energy is completely
understood.

Proposition 7.1. Hopfvector fields on Lorentzian Berger’s spheres are stable critical points
of the spacelike energy

Proof. Let A : §2't1 — (Nt c €1, we set

27[ . .
Al(p) = % /0 AEp) e dp e (JN);

so that the Fourier series dfis

A(p) = _ Ai(p).

leZ

SinceA;(é?p) = €/ A;(p), we have
ViNA = §JNA = Z i1A;
leZ

and, ifC(p) denotes the fiber of the Hopf fibration passing thropgh

f (A1 A) =0
C(p)

if I # q. As in[4] we can show that if # ¢ then
(HessB)yu(A) = Z(HGSSB)VM (A)).
€7
Now,

2n
IVEAI? = =1V AP+ wll AP+ ) (e(VE A, Ep)?,
i, j=1
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then
(HessB)yu (A)
_*

N

Sinceg, (V. A, IA) = (1 + 1 — 1) /(V=m)IlAlI?, and 21— — 1) > Oforl € Z~ then
(HessB)yu(A;) > 0. Let us see now what happens for posifivia [9], it has been shown
that

2n
2 1 2 n
/Szn+1 2nu||A|l“ + E (g( E,—A’ E)+2 eu(Vyu A, IA dv,

ij=1

(HessB)yu (A)
> /S o (A= 40) £+ 20 +2) = ) AP = [V A = n/=IA)2) o,
from where we obtain usin) that
(HessB)yi () > /S (a0 £ 204 2 ) AT

— IV A = nd/=iIAI + Vi A — /=pIAP) dvy,
=/ (L= 4n) + 20+ 2— nd) A2
52n+1
1 2 1 2
+;||VVA + (= 14 nw)IA|* — ;anA + (2u — DJIA?dv,,.
Consequently,
(Hess) i (Ap) > f
SZn

1
+/ (Ut — 14 np)? =+ 26— DA Al dv,
S

2n+1 [

(=) + 20+ 2 — pn®) | Al dvy

=/ ((—2n—2) +2nl — 21 + &y dvy > O
s2n+1

for all positive/ and soV* is stable. O
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